skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malthaner, Ryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper we present new proofs of the non-embeddability of countably branching trees into Banach spaces satisfying property beta_p and of countably branching diamonds into Banach spaces which are l_p-asymptotic midpoint uniformly convex (p-AMUC) for p>1. These proofs are entirely metric in nature and are inspired by previous work of Jiří Matoušek. In addition, using this metric method, we succeed in extending these results to metric spaces satisfying certain embedding obstruction inequalities. Finally, we give Tessera-type lower bounds on the compression for a class of Lipschitz embeddings of the countably branching trees into Banach spaces containing l_p-asymptotic models for p>=1. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026